

Klimaschutzoffensive des Handels Webinarreihe "Energieeffizienz in der Kühlkette", Online-Workshop, 23. Juni 2021

Lebenszykluskosten

Unterlagen:

Universität Brescia, Italien Technische Universität Riga, Lettland (Institut für Energiesysteme und Umwelt) Handelskammer Korinth, Griechenland (ANEPKO)

Vortrag:

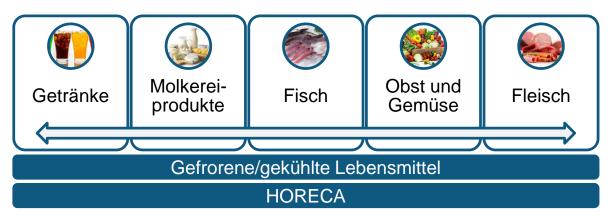
Simon Hirzel, Fraunhofer-Institut für System- und Innovationsforschung ISI

Dieses Projekt wurde durch das Forschungs- und Innovationsprogramm Horizont 2020 der Europäischen Union im Rahmen der Zuschussvereinbarung Nr. 847040 finanziert. Die alleinige Verantwortung für den Inhalt dieser Präsentation liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung der Europäischen Union wieder. Weder die EASME noch die Europäische Kommission sind für die Verwendung der darin enthaltenen Informationen verantwortlich.

- Einführung: Überblick über das ICCEE-Projekt
- Hauptteil: Lebenszykluskosten
 - Einführung in die Lebenszykluskostenrechnung
 - Arten der Lebenszykluskostenrechnung
 - Anwendungsbeispiel
- Abschluss

Überblick über das ICCEE-Projekt

ICCEE: 13 Projektpartner aus Europa



ICCEE: Schwerpunkte

Die Kühllieferkette als Netzwerk von Unternehmen von der Erzeugung bis zum Endkunden für Produkte, die temperaturkontrolliert gehandhabt werden müssen.

ICCEE fokussiert sich auf KMUs in Kühlketten des Lebensmittel- und Getränkesektors (ohne große Unternehmen auszuschließen!)

ICCEE: Zielsetzung

Vorgehensweisen etablieren

 Verbreitung von Energieeffizienzmaßnahmen innerhalb der Kühlketten im Lebensmittel- und Getränkesektor mit Fokus auf KMU durch die Bereitstellung von Arbeitshilfen und interaktiver Formate zu begünstigen

Potentiale aufzeigen

• Ganzheitlicher Projektansatz, der über eine Einzelunternehmens-Perspektive hinaus auf gesamte Lieferketten zielt, wodurch übergreifende Potenziale für Maßnahmen erkannt und besser gehoben werden sollen

Investitionen beschleunigen

 Mit Hilfe der entwickelten Formate zielt das Projekt darauf ab, die Umsetzung von Energieeffizienzmöglichkeiten durch tatsächliche Investitionen zu beschleunigen.

ICCEE: Methoden und Instrumente

WARUM

- Bewusstsein und Wissen von Stakeholdern erhöhen
- Änderungen bei Gewohnheiten und Verhalten herbeiführen
- Schaffung einer Grundlinie für eine stärkere "Energiekultur"
- Identifikation potenzieller Hemmnisse für Veränderungen
- Europäische Workshops
- Online-Lernmodul
- Informationsnetzwerk der Industrie
- Methoden und Werkzeuge für Kühllieferketten

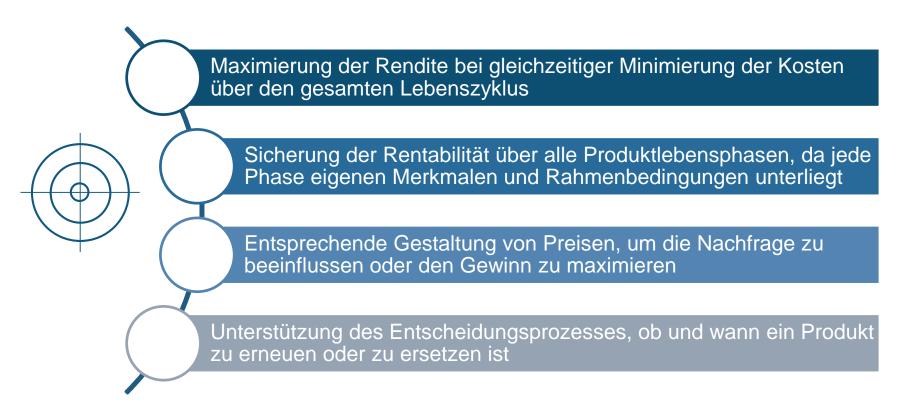
Lebenszykluskosten

Lebenszyklusperspektiven

Traditionelles Betrachtungsmodell

(linearer Prozess)

Rohstoffgewinnung Herstellungsprozess 90% Abfall


Lebenszyklusorientiertes Modell

(geschlossene Kreislaufprozesse)

Argumente für die Lebenszykluskostenrechnung

Lebenszykluskosten: Grundsätzliches

Lebenszykluskosten: (engl. Life Cycle Costs, LCC) Sämtliche relevanten Kosten, die für ein Produkt/Projekt in dessen gesamten Lebenszyklus anfallen (von der Wiege bis zur Bahre).

$$LCC = C_{F\&E} + C_{RM} + C_{P} + C_{V} + C_{L} + C_{O\&M} + C_{W}$$

C_{F&E}: Forschungs- & Entwicklungskosten

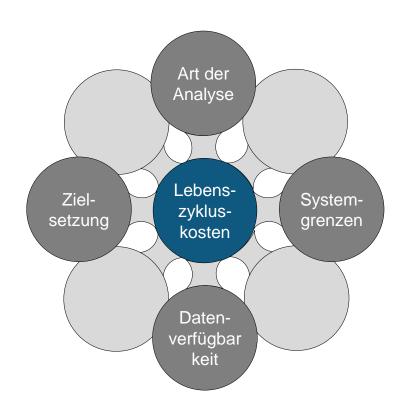
C_{RM}: Rohstoffkosten

C_P : Produktionskosten

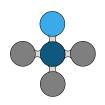
C_V: Verpackungskosten

C₁ : Logistikkosten

C_{O&M}: Nutzungs- und Instandhaltungskosten


C_W: Kosten für die Abfallentsorgung

Einflussfaktoren auf die Ermittlung der Lebenszykluskosten


Die Ermittlung der Lebenszykluskosten kann in vielen Varianten erfolgen und hängt von unterschiedlichen, voneinander auch abhängigen Festlegungen und Einflussfaktoren ab, wie:

- Zielsetzung
- Art der Analyse
- Systemgrenzen
- Datenverfügbarkeit

Ermittlung der Lebenszykluskosten: Arten der Analyse

Gesellschaftliche Lebenszykluskosten

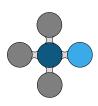
Zusätzliche Bewertung weiterer externer Kosten

Ökologische Lebenszykluskosten

Zusätzliche Berücksichtigung der externen Kosten, die voraussichtlich in der entscheidungsrelevanten Zukunft internalisiert werden

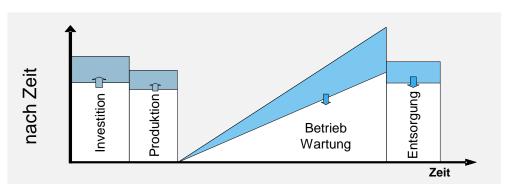
- Bewertung der internen Kosten
- meist ohne End-of-life-Kosten
- ohne Ökobilanzierung

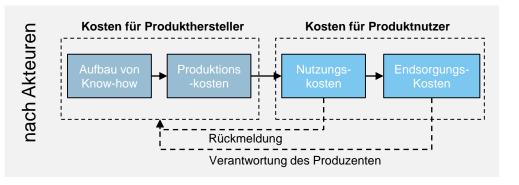
Entwicklung von Wissen

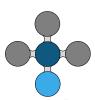

Herstellung von Materialien oder Komponenten

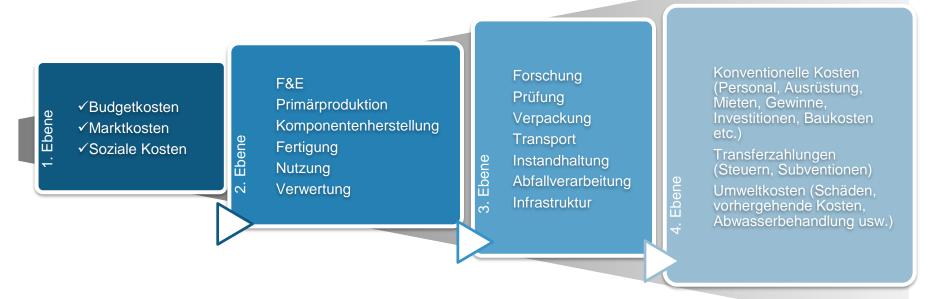
Nutzung und Wartung

Verwertung


Ermittlung der Lebenszykluskosten: **Systemgrenze**


Lebenszykluskosten: Sämtliche relevanten Kosten, die für ein Produkt/Projekt über dessen gesamten Lebenszyklus anfallen.





Ermittlung der Lebenszykluskosten: Datenverfügbarkeit

Black box

White box

Ermittlung der Lebenszykluskosten: Beispiel Waschmaschine

		Menge	Kostensatz	Gesamt
	Forschung und Entwicklung			20,00 €
	Arbeit	0,5 h	40 €/h	20,00€
	Herstellung von Komponenten	216,45 €		
	Stahl	26,5 kg	1,5 € /kg	39,75€
	Beton (Gewicht)	1 Stück	10 €/Stück	10,00€
	Carborane (40%)	12,0 kg	1,8 € /kg	21,60 €
	Kunststoffe (haupts. PP)	6,0 kg	1,1 € /kg	6,60€
	Aluminium	4,0 kg	1,8 € /kg	7,20 €
	Spanplatten	2,5 kg	0,9 € /kg	2,25€
Ō	Grauguss	2,0 kg	1,2 € /kg	2,40 €
n n	Glas	1 Stück	16 €/Stück	16,00 €
<u>=</u>	Kupfer	1,0 kg	1,9 € /kg	1,90 €
Herstellung	Elektronische Bauteile	1 Stück	75 €/Stück	75,00 €
争	Baumwolle (phenol. Binder)	0,5 kg	35,0 € /kg	17,50 €
_	Kabel	1,5 m	1,5 € /m	2,25€
	Andere Materialien	2,0 kg	7,0 € /kg	14,00 €
	Produktion			106,00 €
	Strom	50,0 kWh	0,16 €/kWh	8,00€
	Gas	40,0kWh	0,05 €/kWh	2,00€
	Wasser und Abwassergebühr	$0,09 \text{ m}^3$	3,5 € /m³	0,32 €
	Abfallbehandlung	7 kg	4 €/kg	
	Sonstige Services			15,00 €
	Arbeit (sonstige)	1,3 h	25 €/h	33,00 €
	Abschreibung und Steuern			20,00€
	Gesamt			342,32 €

$$LCC = C_{F\&E} + C_{RM} + C_{P} + C_{V} + C_{L} + C_{O\&M} + C_{W}$$

		Menge	Kostensatz	Gesamt
	Nutzung			1416,00€
g	Kauf	1 Stück	500 €/Stück	500,00€
Nutzur	Wasser	70,17 m ³	4 €/m³	280,68€
	Kauf Wasser Strom	1117 kWh	0,18 €/kWh	201,06€
	Waschmittel	183,84 kg	1,76 € /kg	323,56 €
	Entsorgung	1 Stück	0,00€/Stück	0,00€
	Instandhaltung	1 Stück	10 € /a	110,00€

		Menge	Kostensatz	Gesamt
DG	Verwertung			-34,00€
ξ	Abholung	1 Stück	8 €/Stück	8,00€
rwer	Demontageprozess	1 Stück	16 €/Stück	16,00€
Verw	Wiederverwertung	1 Stück	-48 €/Stück	-48,00€
	Recyclingprozess	1 Stück	5 €/Stück	5,00€
	Recycling	1 Stück	-15 €/Stück	-15,00€

mit Änderungen aus: Hunkeler, Lichtenvort, & Rebitzer (2008)

Konventionelle Betrachtung: Methoden/Techniken I

Gesellschaftliche Lebenszykluskosten
Ökologische Lebenszykluskosten

Konventionelle Lebenszykluskosten

Methode Beschreibung		Einsatzfall/Charakterisierung			
Expertenurteil/ Delphi-Methode	Nutzung von Expertenwissen und Erfahrungen durch iterative Prozesse und Rückmeldungen	 Nutzung, wenn nicht genügend Daten/parametrische Kostenbeziehungen vorhanden sind oder bei instabilen Systemarchitekturen 			
Parametrische Schätzung/ Schätzung von Kostenverläufen	Verwendet mathematische Ausdrücke und historische Daten zur Erstellung von Kostenbeziehungsmodellen mittels Regressionsanalyse	 Statistische Vorhersagen liefern Informationen über den erwarteten Wert und die Güte der Vorhersage Weniger Abhängigkeit von Systemarchitekturen Weniger subjektiv 			
Top-Down-Methode	Ausgehend vom Gesamtprojekt Ableitung durch Zerlegung in untergeordnete Komponenten und Lebenszyklusphasen	Schnelle und einfache BereitstellungMinimale Projektdetails erforderlichSystemorientiert			
Tatsächliche Kosten- Methode	Verwendet Kosten aus der Prototypenherstellung, aus der Erstellung der Entwicklungsmodellen und frühen Produktionsläufen, um Kosten für das System abzuschätzen	 Bietet einen detaillierten Kostenvoranschlag Belastbare Daten bezüglich der tatsächlichen Entwicklung 			

Konventionelle Betrachtung: Methoden/Techniken II

Gesellschaftliche Lebenszykluskosten
Ökologische Lebenszykluskosten

Konventionelle Lebenszykluskosten

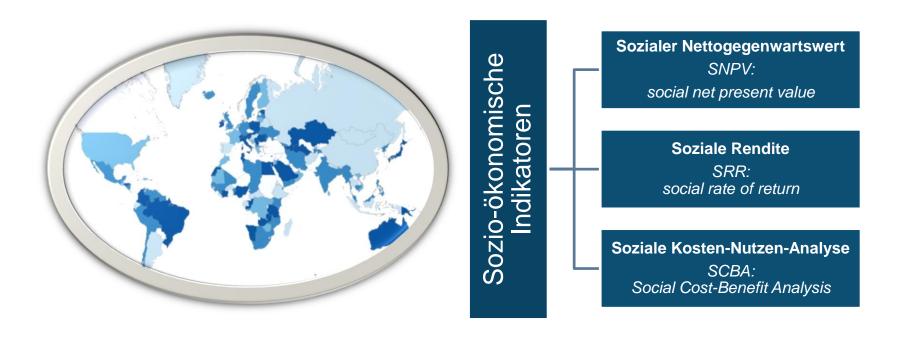
Methode	Beschreibung	Einsatzfall/Charakterisierung			
Analogieschlüsse/ Vergleichende Methoden	Extrapoliert verfügbare Daten aus ähnlichen abgeschlossenen Projekten und passt Schätzungen für das vorgeschlagene Projekt an	 Belastbar aufgrund historischer Daten Weniger komplex als andere Methoden Zeitsparend 			
Kostenrechnungs- methoden	Ermittelt auf der Grundlage von Ausgaben die Kostenkomponenten	Belastbar bei detaillierter Datenerhebung			
Technische Konstruktionen/ Bottom-Up-Methoden	Schätzungen direkt auf der Ebene der aufgeschlüsselten Komponenten, was kombinierten zu einer Gesamtschätzung führt	 Am detailliertesten auf der Komponentenebene durch Strukturpläne Systemorientiert Hochpräzise Hohe Sichtbarkeit der Kostentreiber Genauestes Mittel zur Kostenberechnung eines Systems 			

Ökologische Betrachtung: Charakterisierung

Gesellschaftliche Lebenszykluskosten
Ökologische Lebenszykluskosten
Konventionelle Lebenszykluskosten

Die ökologische Lebenszykluskosten...

- ... können zur Abschätzung der wirtschaftlichen Aspekte eines Unterfangens eigenständig oder als Teil einer weitergehenden Nachhaltigkeitsbewertung Verwendung finden
- ... stellen eine **quantifizierte Bewertung von** Sachverhalten dar und können somit zur Messung von Fortschritts verwendet werden
- ... werden sind aufgrund ihres vergleichenden und systemischen Charakters im Kontext der Nachhaltigkeit kein Ersatz für eine detaillierte konventionelle Kostenrechnung
- ... hilft beim **Verständnis von Trade-Offs** innerhalb des Lebenszyklus



Soziale Betrachtung: Schlüsselindikatoren

Gesellschaftliche Lebenszykluskosten

Ökologische Lebenszykluskosten

Konventionelle Lebenszykluskosten

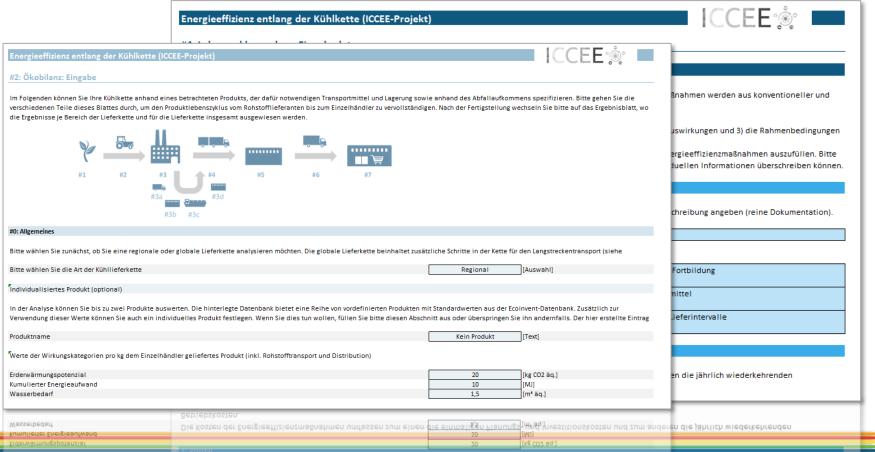
Ergebnisse nach Analyseart: Beispiel nach Perspektiven

Ökologische Lebenszykluskosten

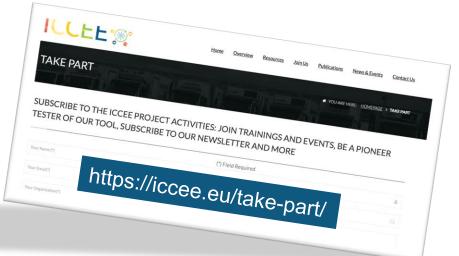
Konventionelle Lebenszykluskosten

	Konventionelle Lebenszykluskosten			Ökologische Lebenszykluskosten			Gesellschaftliche Lebenszykluskosten		
Phase	Kosten	Wirkungs- kategorie	Auswirkung	Kosten	Wirkungs- kategorie	Auswirkung	Kosten	Wirkungs- kategorien	Auswirkung
F&E	-	Keine ergänzende Ökobilanz					-	Keine ergänzende Ökobilan zur Vermeidung von Doppelzählungen	
Vorproduktion	-			+16€	Versauerung	8 kg SO2 äquivalent	+229€		
Produktion	314€			+40€	Eutrophierung	2kg Stickstoff	-		
Nutzung	858€				Globale Erwärmung	1657 kg CO2 äquivalent	+380€		
Verwertung	-			-42€	Ressourcen- verknappung	830 kg Öl	- 34 €		
Gesamt	1172 €			1216€			1791 €		

21



Abschluss



Ausblick: ICCEE-Werkzeugkasten

Dr. Simon Hirzel Fraunhofer Institut für System- und Innovationsforschung ISI simon.hirzel@isi.fraunhofer.de

Dieses Projekt wurde durch das Forschungs- und Innovationsprogramm Horizont 2020 der Europäischen Union im Rahmen der Zuschussvereinbarung Nr. 847040 finanziert. Die alleinige Verantwortung für den Inhalt dieser Präsentation liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung der Europäischen Union wieder. Weder die EASME noch die Europäische Kommission sind für die Verwendung der darin enthaltenen Informationen verantwortlich.